Simulations in the Development Process of GaN-based LEDs and Laser Diodes

Dominik Eisert and Volker Härle

Dominik Eisert 21.10.02 Seite: 1

Simulations in the Development Process of GaN-based LEDs and Laser Diodes

Introduction • Applications for InGaN high brightness LEDs

InGaN Light Emitting Diodes

- LED development process: where can simulations be useful?
- Specific InGaN chip development project accompanied by simulations
- InGaN• Progress of Laser Diode DevelopmentLaser Diodesat Osram OS

Dominik Eisert 21.10.02 Seite: 2

Our Activities and Locations

Siemens AG \rightarrow OSRAM GmbH \rightarrow OSRAM Opto Semiconductors GmbH

World Market by Product Segments

Dominik Eisert 21.10.02 Seite: 4

Material Systems for High Brightness LEDs

Applications for GaN-LEDs

Automotive Interior + Exterior

Marker Lights

Dominik Eisert 21.10.02 Seite: 6

Mobile Applications

Opto Semiconductors

OSRAM

Applications for LED Modules

Signal Lights

Illuminated Signs

Dominik Eisert 21.10.02 Seite: 7

Full Color Displays

Are Semiconductors the Light of the Future?

"White LED"

InGaN-chip generates blue light

Lamp Modules Applications: General Lighting

LED Modules for general lighting

information and orientation lighting
effect lighting

ambient lighting

LED Modules offers creative design possibilities extremely low-profile light solutions high light output ratio reduced maintenance costs

Dominik Eisert 21.10.02 Seite: 10

Complexity of LED Production

LED Development Scenario

Brightness Development of InGaN QW-LED

Sapphire technology used by competitors 10% 6 9% (Mm) 5 8% wallplug efficiency 7% power output @20mA **6%** or of the second 5% 3 4% 2 3% 2% SiC-technology 1% favored by Osram 250µm 0 0% Mar Jun Apr May Jul Aug Sep Oct Nov Dec Jan Feb for 460nm blue LED 99 99 99 99 99 99 99 99 99 99 99 00 in 5mm Radial housing OSRAM **Opto Semiconductors Dominik Eisert**

21.10.02 Seite: 13

"Dark" Transparent Substrate?

GaP-based chip

Though 6H-SiC is transparent for blue light: no emission from substrate observed!

Dominik Eisert 21.10.02 Seite: 14 **Opto Semiconductors**

GaN on SiC

Light Extraction from GaN/SiC-System

How can the Efficiency be Improved

improved light extraction:

Increase overlap of incident rays with outcoupling cone

Inclined substrate facets

- optimized use of outcoupling cone
- light extraction on first incidence

Dominik Eisert 21.10.02 Seite: 16

Steps towards Realization of ATON-Technology

dicing process modification: transfer of inclined facet design into SiC-substrate

Simulation:

• fewer experimental optimization cycles

confidence in optimum performance level

Dominik Eisert 21.10.02 Seite: 17

Raytracing Analysis

Objectivel of Chip Development:

• optimize External Quantum Efficiency (EQE) EQE hard to assess experimentally!

Non-sequential Raytracing Analysis

D EQE + intensity distribution

- + complete geometrical 3D chip model
- transparent + absorbing elements
- + scattering
- interface to package development
- wave effects
- electrical/thermal properties

Opto Semiconductors

Dominik Eisert 21.10.02 Seite: 18

Optimization of Chip Shape

Facet Angle

ATON/socket ratio

- optimum facet angle $\approx 30^\circ \implies$ **Doubling of Extraction Efficiency**
- limited by ohmic heating

Dominik Eisert 21.10.02 Seite: 19

ATON in TOPLED - Package

Reliability of ATON Chip in Package: Mechanical Stresses

LED-Package: materials with largely differing thermal expansion coefficients ⇒ Delamination?

FEA shows no increased delamination risks for pyramidal chip

Dominik Eisert 21.10.02 Seite: 21

Brightness Development of InGaN-LED

LEDs for POWER Applications

High flux LED on SiC: Options for Scalability

Multiple inner grooves

- Φ_e = 150 mW blue Φ_v = 33 lm white
- I_f=350 mA / U_f=3,9 V
- Chip area: 1 mm²

Surface texturing

Dominik Eisert 21.10.02 Seite: 24

Potential Market Segments for Blue Laser Diodes

optical storage

laser printing

projection - displays

medical technology industrial printing technology spectroscopy

...

Dominik Eisert 21.10.02 Seite: 25

Structure of InGaN Laser Diode on SiC

Vertical Structure InGaN SCH-Laser Diode GaN:Mg contact layer • SiC substrate p-doped vertical current flow AlGaN:Mg cladding • ridge wave guide GaN:Mg cleaved facets wave guide GaInN/GaN MQW active zone dielectric mirror coating GaN:Si n-doped AlGaN:Si cladding buffer SiC-substrate SiC OSRAM **Opto Semiconductors** Dominik Eisert 21.10.02 Seite: 26

Work Packages with GaN Lasers on SiC

Indium fluctuations

epitaxial growth parameters

Reduction of Losses

- p-contact
- laser facets

- index guiding
- laser mounting

Heterostructure design

- number and depth of quantum wells
- piezoelectric effect
- wave guides

Dislocations

lattice mismatch GaN/SiC 3.4% disloc. dens. up to 5x10⁹cm²

Dominik Eisert 21.10.02 Seite: 27

Minimize Threshold Current Density

quantum well parameters

Influence of Mounting

- 3 µm ridge, heatspreader c-BN
- calculated thermal resistance R_{th} = 22.8 K/W

Direction of mounting:

 \rightarrow not critical due to high thermal conductivity of SiC (=Cu)

Dominik Eisert 21.10.02 Seite: 29

Lasing Characteristics

Dominik Eisert 21.10.02 Seite: 30

Lifetime Development

Dominik Eisert 21.10.02 Seite: 31

Lifetime of GaN Laser Diodes: Defect Density and Pump Power

Dominik Eisert 21.10.02 Seite: 32

Simulations in the Development Process of GaN-based LEDs and Laser Diodes

ATON LED-Technology

- Simulations in Development
 - Benefit of Simulations

- 80% brightness improvement
- makes SiC-technology highly competitive
 - extensive use of Raytracing Simulations chip optimization, emission patterns, ...
- fast and linear progress
- know-how basis for future projects

InGaN Laser Diodes

life time of 143h optimizing GaN on SiC technology
next objective must be defect reduction

Thanks InGaN LED/LD devel. team, Process devel. group Package devel. group, External partners

> Dominik Eisert 21.10.02 Seite: 33

